II B.Tech - I Semester –Regular / Supplementary Examinations DECEMBER 2022

SURVEYING

(CIVIL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	CO	Max. Marks						
		UNIT-I									
1	a)	Explain how to range a line with a neat sketch, if the	L2	CO1	7 M						
		end stations are not intervisible.									
	b)	In chaining an area containing a pond, two points C	L3	CO1	7 M						
		and D were selected on either sides of chain station A									
		such that A, C and D points lie on a line. The points B									
		which is on the other side of pond is on the chain line									
		AB. If distances AC, AD, BC and BD are 35 m, 45 m,									
		100 m, and 95 m respectively, determine the length of									
		the chain line AB and the angles which the inclined									
		line CD makes with the chain line AB.									
2	a)	Distinguish between dip and declination, Prismatic	L2	CO1	6 M						
		Compass and Surveyor's compass.									
	b)	The following bearings were taken in running a	L3	CO1	8 M						
		compass survey.									

		Line Fore Bearing Back bearing								
		AB 124°30' 304°30'								
		BC 68°15' 246°0'								
		CD 310°30' 135°15'								
		DA 200°15' 174°45'								
		At what stations do you suspect local attraction? Find								
		the correct bearings of the lines and also compute the								
		included angle.								
		UNIT-II								
3	a)	Explain in detail about the method of intersection with	L2	CO1	7 M					
	,	a neat sketch.								
	b)	What is the principle of plane table surveying and	L2	CO1	7 M					
		explain about the instruments used in plane table								
		surveying.								
OR										
4	a)	Define contour. What are the different methods of	L2	CO2	6 M					
		locating contour? Explain any one method in detail.								
	b)	The following consecutive readings were taken with a	L3	CO2	8 M					
		level and 5m levelling staff on a continuously slopping								
		ground at a common interval of 20 m, : 0.385, 0.030,								
		1.925, 2.825, 3.730, 4.685, 0.625, 2.005, 3.110, 4.485.								
		Prepare a page of field book and calculate the reduced								
		level of points by rise and fall method, first reading								
		was taken on a bench mark of RL 208.125 m. Also								
		find slope of the ground.								
UNIT-III										
5	a)	What is transit theodolite and what are the temporary	L2	CO3	7 M					
		adjustments in Theodolite?								
	b)	How will you measure horizontal angle using	L2	CO3	7 M					
		theodolite by repetition method and reiteration								
		method?								

		OR				
6	a)	Two distances of 20 m and 100 m were accurately	L3	CO3	6 M	
		measured out and the intercepts on the staff between				
		the outer stadia webs were 0.196 m at the former				
		distance and 0.996m at the latter. Calculate the				
		tacheometric constants.				
	b)	A tacheometer was setup at a station A and the	L4	CO3	8 M	
		readings on a vertically held staff at B were 2.255,				
		2.605 and 2.955. The line of sight being at a				
		inclination of $+80^{\circ}$ 24'. Another observations on the				
		vertically held staff at B.M gave the readings 1.640,				
		1.920, and 2.200, the inclination of the line of sight				
		being $+10^{\circ}$ 6'. Calculate the horizontal distance				
		between A and B, and the elevation of B if the RL of				
		BM is 418.685 m. The constants of the instruments				
		were 100 and 0.3.				
		UNIT-IV				
7	a)	Explain the procedure of setting of a simple curve by	L2	CO4	6 M	
		method of chords.				
	b)	Two straights intersect at chainage 2056.44 m and the	L3	CO4	8 M	
		angle of intersection is 130° . If the radius of the simple				
		curve to be introduced is 50 m, set out the curve by				
		offsets from long chord for 5m interval. Find the				
		following:				
		(i) Chainage of the point of commencement				
		(ii) Chainage at point of tangency				
		(iii) Length of the long chord.				
OR						

6		— • -	0 22 1	1 771 1	•	T 4	act	0.7.5	
8	a)	Two straights	L4	CO4	8 M				
		chainage of 1							
		They are to su							
		peg interval a							
		out the curve							
	b)	A series of o	L4	CO4	6 M				
		following orde							
		2.16, 1.53, 1							
		2.40, 2.58, 2.	s. Find the area						
		between the c	ary and the end						
		offsets by Sim	npson's rule.						
	1					1	II		
				UNIT-V					
9	a)	What is trian	gulation? Wh	nat is the c	classification of	L2	CO5	6 M	
		triangulation system? Briefly explain.							
	b)	Find the R.L of	of top of a ten	storeyed by	uilding from the	L3	CO5	8 M	
		following obs	ervations.						
		Instrument	Reading of	Vertical	R.L of				
		Station	B.M	angle	station B.M				
		А	2.625 m	$19^{\circ} 48'$	500 m				
		В	1.510 m	14 [°] 25'	500 m				
		distance betwe	B, B.M and the						
		building are in	n same vertical	l plane.					
OR									
10	a)) Explain different types of EDM instruments. Which L2 CO5 7							
		are the different types of modulation of							
		electromagnet							
	b)	Explain the use of GIS and GPS in civil engineering.						7 M	